HYPERCOSM LLC

HYPERCOSM APPLETS AND SECURE
ENCODING OF 3D MODELS

A White Paper prepared by Hypercosm LLC., December 2005

Introduction

When displaying interactive 3D information
over the web, there is often a requirement to
visually display an interactive view of a 3D
model on the end user's machine without
making the actual 3D model information
available. This presents a dilemma because
the 3D model must exist on the client
machine in order to be displayed, but it can
not be transmitted in a form where it can be
extracted. This white paper describes
Hypercosm's unique approach and solution
to this problem.

Hypercosm’s Solution
Hypercosm solution to this problem relies
upon a technique known as “procedural
modeling”. Using procedural modeling,
you describe not the geometry of the object
or scene, but rather a series of instructions
on how to create the object or scene that is
desired. This approach relies upon a
suitable “interpreter” to decode and execute
the instructions in order to generate the final
result.

Hypercosm Patent Information

For more information on this approach,
see Hypercosm'’s Patent:

“Method and Apparatus for Data
Compression for Three-Dimensional
Graphics”

This patent is US Patent #6,426,748 B1,
awarded on July 30, 2002.

This approach is desirable for three main
reasons:

Benefits of Hypercosm’s procedural
modeling approach:

1. Efficiency (file size) - It is often
much more efficient to describe how
to create an object than to describe
the object itself.

2. Security - In order to decode the
object, you must be able to interpret
the instructions to create the desired
objects. This is more difficult than
interpreting a static description of
the object and it must be done
correctly to yield the proper result.

3. Flexibility - since we are describing
how to create the 3d scene, the
initial creation parameters can be
altered to yield new variations. For
example, the tessellation parameter
can be changed and the objects can
be re-generated with a lower
polygon count.

An Analogy
A useful analogy for this approach is to
think about DNA.

1. Efficiency - DNA encoding is
certainly compact and efficient since
it allows the entire description of a
person to fit inside of a single cell.
In order to “decode” the DNA, the
organism is grown. This is similar
to what happens when the applet
runs and the 3d geometry of the

WWW.HYPERCOSM.COM



HYPERCOSM LLC

scene is constructed according to the
applet instructions.

2. Security - deciphering the meaning
of DNA has proven to be a very
difficult process because in order to
understand it, we must understand
not just the genome, but also what
will be the result of the genome
when it is expressed. A similar
analogy is to think of a computer
program. It is not too difficult to
understand the meaning of a
software program when looking at
it line by line. However, predicting
what will happen when that
program actually runs can be a very
difficult process, even for the
programmer who wrote it.

3. Flexibility - DNA is responsible for
encoding every form of life on
Earth. One of DNA’s main
purposes is to allow flexibility and
variation since that allows for
evolution. Another analogy from
software is to think of the difference
between a computer language and a
file format. A computer language
can encode an unlimited set of ideas
whereas a static file format is
restricted by its definition to a
specific set of functionality.

The Encoding Process
The encoding process relies upon a series of
steps as described below.

Step 1: Convert 3ds max File to OMAR
Script Code

In the first step, the high level information
in the 3ds max file is converted into script
code written in Hypercosm’s OMAR
scripting language. This step is performed
by Hypercosm'’s Teleporter software. The
OMAR language is a Java-like language

with extensions built in for 3d graphics. Itis
similar in structure to Java but has built in
data types for vectors, transformations and
scene graph management to make 3d
graphics operations easier to code and more
efficient to execute. 3ds max primitives,
modifiers, animation controllers, materials,
and other entities are written in OMAR
script code that is built on top of very basic
and general purpose 3d graphics subsystem.
This allows the Hypercosm Player to only
support a basic set of primitives such as 3d
meshes while higher level entities such as
lofts, extrusions, and other primitives can be
encoded in the scripting language. This
system allows the Hypercosm Player to
support many different high level formats.
It also allows the system to be maintained
more easily because improvements to the
export capability can be made by changing
the script code that is exported rather than
requiring changes to the Hypercosm Player.
The ideas behind this approach are similar
to the ideas used in the Postscript language
that is used for 2d graphics and desktop
publishing. The Postscript language is based
upon a simple scripting language called
Forth which is used like Hypercosm’s
OMAR, but for encoding descriptions of 2d
objects.

Step 2: Convert Hypercosm Script Code to
Bytecode Assembly Language

In the next step, the OMAR script language
is compiled into a bytecode assembly
language. This is similar to the process used
by Java compilers to convert human
readable text based code into an
intermediate representation that can be
interpreted by the computer. This step is
performed by the OMAR compiler that is
built in to the Hypercosm Teleporter.

Step 3: Convert Bytecode Assembly
Language to Applet

WWW.HYPERCOSM.COM



HYPERCOSM LLC

In the last step, the OMAR Bytecodes are
compressed and combined into a binary
format along with other information about
the applet which may include inline
resources for sounds and textures, version
information, and optional digital signature
information (publishing keys) for restricting
the playing of applets or tagging applets
with a watermark.

references to plug-ins to interpret this data

Hypercosm Teleporter

OMAR Script — Text readable script code
written in Hypercosm’s Object Oriented
Modeling, Animation, and Rendering
Language (OMAR)

Bytecode Assembly Language —
Mnemonic representation of low level
Hypercosm Bytecode instructions — this is
used internally by the Hypercosm
compiler and is never seen

v Hypercosm Applet — Binary compressed
Torororo representation of Hypercosm Bytecode
e instructions needed to generate 3d scene

Hoioto geometry, materials, etc

+
L

Standard HTML Web Page — This web
page serves as a container for the

ég Hypercosm Applet. The web page is
viewed in a standard browser and the
applet is displayed by a web browser
plug-in

Figure 1: The Encoding Process

The Decoding Process

In the decoding process, we follow the
instructions encoded in the applet to create
and then display the desired shapes. This
process is performed by the Hypercosm
Player using a Hypercosm Applet as input.

Step 1: Interpret Hypercosm Applet
Instructions

3ds max file - File used by 3ds max
W containing geometry, modifiers, materials, and

In order to decode a Hypercosm applet, we
must have an appropriate interpreter to
actually execute the Hypercosm applet.

Step 2. Create Scene Graph

The scene graph is the underlying data
structure that represents the high level
organiation of the scene. This is constructed
according to instructions executed by the
interpreter.

Step 3. Create Meshes

The mesh level representation is a low level
(vertices, edges, etc.) description of the
surface geometry. These meshes are
constructed by the interpreter. For high
level objects such as lofts, extrusions, etc.,
the actual mesh geometry doesn’t even exist
in the original applet file and only comes
into existence when the applet runs.

Step 4. Display

Once the scene graph and the meshes have
been constructed, they are displayed by the
viewer, in this case, the Hypercosm Player.

Hypercosm Applet — Binary compressed
o representation of Hypercosm Bytecode

o instructions that need to be executed in
order to generate 3d scene geometry,
materials, etc.

Hypercosm Player

& Scene Graph Construction — The scene
graph is constructed as the applet is run
l according to the instructions contained in
the Hypercosm Bytecodes.

Mesh Generation — Code in the applet
instructs the Hypercosm Player to build
meshes based upon primitives, modifiers
efc. that are encoded in the anplet.

Display - After the object and its
materials and geometry have been
- constructed, it is displayed by the

i =777 BN Hypercosm Player in the web page

Figure 2: The Decoding Process

WWW.HYPERCOSM.COM



HYPERCOSM LLC

A Closer Look: The OMAR
Script Language

To get an idea of what the OMAR script
code looks like, the following page contains

Figure 4: Power Cable Generated By The
Script Code Shown in Figure 3

an example of a typical fragment of
exported OMAR script code. From this
code, you can see how the parameters that
define objects are passed through the code

to generate the geometry.

Figure 3: Sample Fragment of Exported

OMAR Script Code

include “system/3d.ores”;
include “system/3ds_translator.ores”;

shape Pwr_Chl01 with
scalar tessellation = 1;

is

end;

translated_3ds_loft with
path_steps = round (3 * tessellation);
shape_steps = round (1 * tessellation);

end;

path is (new translated_3ds_line of |
translated_3ds_connected_spline through [

]

with

translated 3ds_smooth_vertex at <0.38353 -15.803 -1.926>
translated 3ds_smooth_vertex at <0.2513 -15.833 0.21628>
translated 3ds_smooth_vertex at <0.22166 -15.617 1.9216>
translated 3ds_smooth_vertex at <0.23124 -15.268 3.6237>
translated 3ds_smooth_vertex at <0.18649 -15.363 4.9775>
translated_3ds_smooth_vertex at <0.16111 -15.456 6.0127> ]

steps = round (6 * tessellation);
thickness = 1;
gen_mapping_coords is true;

)i

cross_sections is [

(new translated_3ds_circle with

I

path_offsets is |
0
I

radius = 0.17168;
steps = round (6 * tessellation);
thickness = 1;

WWW.HYPERCOSM.COM



HYPERCOSM LLC

A Closer Look: The OMAR

Bytecode Format

In the previous example, we demonstrated
how parameter values are passed through
various subroutines in order to generate the
geometry that is eventually displayed in the
scene. In this section, we will take a closer
look at what happens to the code when it is
compiled.

lid 1
fid 38
fid 4
nil

sca

lid 2
fml
vdp
sdr
sdr

lid 1
fid 38
fid8
vlil100
fli -180
pro0101610
trf 78
std00
lid1
nil

nil
std00
lid 1
nil
scd00
lid 2
nil
scd00
lid 3
nil
scd00
lid 4
nil

ved 00
lid5
nil

ved 00
lid 8
nil
ved00
lid 11

Figure 4: Sample Fragment of Compiled
OMAR Bytecodes

The compiled bytecodes are composed of a
series of instructions followed by operands.
In the bytecode assembly code, each type of
instruction is represented by a three letter
mnemonic. These text mnemonics are later
converted into a binary form when the
bytecodes are compressed. In the example
shown in figure 4, we can identify a few
instructions. For example, the instruction:

vliil00

is code to push a vector literal onto the
operand stack. The next instruction:

fli -180

is code to push a floating point number onto
the operand stack. By looking at the
corresponding source code (not shown
here), we can identify these instructions as a
part of a procedure call to rotate an object by
180 degrees around the x axis.

In order to generate the geometry encoded
by these instructions, it would be necessary
to reverse engineer a virtual machine
capable of executing these instructions in
the exact same way as the Hypercosm
Player. This would be a virtually impossible
task, even if the complete set of information
about the Hypercosm bytecode instruction
set and the underlying virtual machine and
3d graphics subsystem and applet format
were published, which is not the case.

Conclusion

By procedurally encoding 3d geometry into
a series of low level instructions, we have
simultaneously solved the problem of
transmitting complex geometry in an
efficient high level way and also solved the
problem of finding an encoding mechanism
that is virtually impossible to crack or to
reverse engineer.

WWW.HYPERCOSM.COM



